South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 3 (2021), pp. 277-284

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

APPLICATIONS OF \hat{g}^{**} s-CLOSED SETS IN TOPOLOGICAL SPACES

Anto M and Andrin Shahila S

P. G. and Research Department of Mathematics, Annai Vellankanni College, Tholayavattam - 629187, Kanyakumari, Tamil Nadu, INDIA

E-mail: antorbjm@gmail.com, andrinshahila@gmail.com

(Received: Mar. 18, 2021 Accepted: Oct. 10, 2021 Published: Dec. 30, 2021)

Abstract: Topology is the branch of Mathematics which was introduced by Johann Benedict Listing in 19^{th} century and its purpose is to investigate the ideas of continuity, within the frame work of Mathematics. The authors introduces a new class of sets namely, \hat{g}^{**} s-closed sets [1]. We define \hat{g}^{**} s-closed sets by "A subset of a topological space (X,τ) is called a \hat{g}^{**} s-closed sets if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is \hat{g}^{**} - open" [1]. In this paper using the concept of \hat{g}^{**} s-closure, \hat{g}^{**} s-interior, \hat{g}^{**} s-border, \hat{g}^{**} s-frontier and \hat{g}^{**} s-exterior and studied some of its properties.

Keywords and Phrases: \hat{g}^{**} s-closure, \hat{g}^{**} s-interior, \hat{g}^{**} s-border, \hat{g}^{**} s-frontier, \hat{g}^{**} s-exterior.

2020 Mathematics Subject Classification: 54A05.

1. Introduction

Topology was introduced by Listing in 19^{th} century. In 1963 and 1970 Norman Levine introduced the classes of semi-open and g-closed sets respectively [4]. After these many researches on generalized closed sets have been going on. Crossley and Hildebrand defined semi-closure of sets and irresolute functions [2]. In 1973, Das defined semi-interior point of a subset [3]. In 2019, authors introduced the class of $\hat{g}^{**}s$ —closed sets by generalizing the semi-closed sets using \hat{g}^{*} -open [1].

2. Preliminaries

In this paper (X, τ) represents the non-empty topological spaces on which no separation axioms are assured unless otherwise mentioned. For a subset A of X, Cl(A), Int(A), Bd(A), Fr(A), Ext(A) denotes the closure, interior, border, frontier and exterior of A respectively.

Definition 2.1. A subset A of a topological spaces (X, τ) is called

- 1. A semi-open set [5] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- 2. A \hat{g} closed or (w-closed) [6] set if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi open in (X, τ) .
- 3. A \hat{g}^* -closed set [4] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) .
- 4. A $\hat{g}^{**}s$ -closed set [1] if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is \hat{g}^{*} -open in (X, τ) .

Definition 2.2. Let (X, τ) be a topological space.

- 1. For every set $A \subset X$, we define the semi-closure [3] of A is the intersection of all semi-closed sets containing A. ie) $sCl(A) = \bigcap \{U : A \subset U, U \in sc(X, \tau)\}.$
- 2. For every set $A \subset X$, we define the semi-interior [2] of A is the union of all semi-open sets containing A.ie) $sInt(A) = \bigcup \{U : A \subset U, U \in so(X, \tau)\}.$
- 3. If A is a subset of X, border of A is defined by $Bd(A) = A \setminus Int(A)$.
- 4. A subset A of a topological space (X, τ) is called as a frontier of A if $Fr(A) = Cl(A) \setminus Int(A)$.
- 5. A subset A of a topological space (X, τ) is called as a exterior of A if Ext(A) = Int(X A).

3. $\hat{g}^{**}s$ - Closure

Definition 3.1. For every set $A \subset X$, we define the $\hat{g}^{**}s$ -closure of A is the intersection of all $\hat{g}^{**}s$ -closed sets containing A.ie) $\hat{g}^{**}sCl(A) = \bigcap \{U : A \subset U, U \in \hat{g}^{**}s(X, \tau)\}.$

Theorem 3.2. If A is $\hat{g}^{**}s$ -closed in X and B is closed in X, then $A \cup B$ is $\hat{g}^{**}s$ -closed in X.

Proof. By hypothesis $X \setminus A$ is $\hat{g}^{**}s$ -open and $X \setminus B$ is open in $X \Rightarrow (X \setminus A) \cap (X \setminus B) = X \setminus (A \cup B)$ is $\hat{g}^{**}s$ -open in X. Hence $A \cup B$ is $\hat{g}^{**}s$ -closed.

Theorem 3.3. If A is any subset of a space X, then $\hat{g}^{**}sCl(A)$ is $\hat{g}^{**}s$ -closed.

Proof. By definition: 3.1, the result is obvious.

Theorem 3.4. A is $\hat{q}^{**}s$ -closed iff $\hat{q}^{**}sCl(A) = A$.

Proof. Necessity condition is obvious.

To prove sufficiency, assume $\hat{g}^{**}sCl(A) = A$, by theorem: 3.3 $\hat{g}^{**}sCl(A)$ is $\hat{g}^{**}s$ -closed. Therefore, A is $\hat{g}^{**}s$ -closed.

Corollary 3.5. If A is $\hat{g}^{**}s$ -closed and U is open in X, then $A \setminus U$ is $\hat{g}^{**}s$ -closed in X.

Proof. $A \setminus U = A \cap (X \setminus U)$. By theorem: 3.2, the proof follows.

Theorem 3.6. Let $A \subseteq X$ and let $x \in X$. Then, $x \in \hat{g}^{**}sCl(A)$ iff every $\hat{g}^{**}s$ -open set in X containing x intersects A.

Proof. Suppose $x \notin \hat{g}^{**}sCl(A) \Rightarrow X \setminus \hat{g}^{**}sCl(A)$ is a $\hat{g}^{**}s$ -open set in X containing x that does not intersects A.

Conversely, Suppose U is A $\hat{g}^{**}s$ -open set containing x that does not intersects A. Then $X \setminus U$ is a $\hat{g}^{**}s$ -closed set containing A. Therefore, $\hat{g}^{**}sCl(A) \subseteq X \setminus U$. Hence $x \notin \hat{g}^{**}sCl(A)$. Thus $x \notin \hat{g}^{**}sCl(A)$ iff there is a $\hat{g}^{**}s$ -open set containing x that does not intersects A.

Theorem 3.7. If A is a subset of X, then

- $i) \ \hat{g}^{**}sCl(X \setminus A) = X \setminus \hat{g}^{**}sInt(A)$
- $ii) \ \hat{q}^{**}sInt(X \setminus A) = X \setminus \hat{q}^{**}sCl(A)$

Proof. i) Let $x \in X \setminus \hat{g}^{**}sInt(A) \Rightarrow x \notin \hat{g}^{**}sInt(A) \Rightarrow x$ does not belong to $\hat{g}^{**}s$ -open subset of A. Then, F is a $\hat{g}^{**}s$ -closed set containing $X \setminus A$. Hence $X \setminus F$ is a $\hat{g}^{**}s$ -open set contained in A. Therefore, $x \notin X \setminus F$ and so, $x \in F$. Hence $x \in \hat{g}^{**}sCl(X \setminus A)$. Then x belongs to every $\hat{g}^{**}s$ -closed set containing $X \setminus A$. Hence x does not belong to any $\hat{g}^{**}s$ -open subset of A. That is, $x \notin \hat{g}^{**}sInt(A)$. Then $x \notin X \setminus \hat{g}^{**}sInt(A)$.

ii) can be proved by replacing A by $X \setminus A$.

Theorem 3.8. If a subset A of X is nowhere dense, then $Int(\hat{g}^{**}sCl(A)) = \emptyset$. **Proof.** $Int(Cl(A)) = \emptyset \Rightarrow Int(\hat{g}^{**}sCl(A)) \subseteq Int(Cl(A))$.

Theorem 3.9. In a topological space (X, τ) , the following hold:

- $i) \ \hat{g}^{**}sCl(\emptyset) = \emptyset$
- $ii) \hat{g}^{**}sCl(X) = X$

If A and B are subsets of X

- $iii) A \subseteq \hat{g}^{**}sCl(A)$
- $iv) A \subseteq B \Rightarrow \hat{g}^{**}sCl(A) \subseteq \hat{g}^{**}sCl(B)$
- $v) A \subseteq \hat{g}^{**}sCl(A) \subseteq sCl(A) \subseteq Cl(A)$

```
\begin{array}{l} vi) \ \hat{g}^{**}sCl \ (\hat{g}^{**}sCl(A)) = \hat{g}^{**}sCl(B) \\ vii) \ \hat{g}^{**}sCl(A \cup B) \supseteq \hat{g}^{**}sCl(A) \cup \hat{g}^{**}sCl(B) \\ viii) \ \hat{g}^{**}s (A \cap B) \subseteq \hat{g}^{**}sCl(A) \cap \hat{g}^{**}sCl(B) \\ ix) \ Cl \ (\hat{g}^{**}sCl(A)) = Cl(A) \\ x) \ \hat{g}^{**}sCl \ (Cl(A)) = Cl(A) \end{array}
```

Theorem 3.10. If A and B are subsets of X such that $A \cap B = \emptyset$ and A is $\hat{g}^{**}s$ open in X, then $A \cap \hat{g}^{**}sCl(B) = \emptyset$.

Proof. Suppose $x \in A \cap \hat{g}^{**}sCl(B) \Rightarrow x \in A$ and $x \in \hat{g}^{**}sCl(B) \Rightarrow x \in A$ and $x \in B \Rightarrow A \cap B \neq \emptyset$ which is a contradiction to hypothesis. Therefore, $A \cap \hat{g}^{**}sCl(B) = \emptyset$.

4. $\hat{g}^{**}s$ - Interior

Definition 4.1. For any $A \subset X$, $\hat{g}^{**}s$ -interior of A is defined as the union of all $\hat{g}^{**}s$ -open sets containing A. ie) $\hat{g}^{**}sInt(A) = \bigcup \{U : A \subset U, U \in \hat{g}^{**}so(X, \tau)\}.$

Theorem 4.2. If the subsets A and B of a topological space (X, τ) are separated $\hat{q}^{**}s$ -open, then $A \cup B$ is $\hat{q}^{**}s$ -open.

Proof. Assume that A and B are separated $\hat{g}^{**}s$ -open sets. Let G be a \hat{g}^{*} -closed set in X such that $G \subseteq A \cup B$. By assumption, we have $Cl(A) \cap B = A \cap Cl(B) = \emptyset$. Then, $G \cap Cl(A) \subseteq (A \cup B) \cap Cl(A) = (A \cap Cl(A)) \cup (B \cap Cl(A)) = (A \cap Cl(A)) \cup \emptyset = A \cup \emptyset = A$. Therefore, $G \cap Cl(A) \subseteq A$. Similarly, $G \cap Cl(A) \subseteq B$. Since G is \hat{g}^{*} -closed in X, $G \cap Cl(A)$ and $G \cap Cl(B)$ are \hat{g}^{*} -closed. Since A and B are $\hat{g}^{**}s$ -open, $G \cap Cl(A) \subseteq sInt(A)$ and $G \cap Cl(B) \subseteq sInt(B)$. Now, $G = G \cap (A \cup B) = (G \cap A) \cup (G \cap B) \Rightarrow G \subseteq (G \cap Cl(A)) \cup (G \cap Cl(B)) \Rightarrow G \subseteq sInt(A) \cup sInt(B) \Rightarrow G \subseteq sInt(A \cup B)$. Therefore, $A \cup B$ is $\hat{g}^{**}s$ -open.

Theorem 4.3. If a set A is $\hat{g}^{**}s$ -open in a topological space (X, τ) , then G = X, whenever G is \hat{g}^* -open and $sInt(A) \cup A^c \subset G$.

Proof. Suppose A is $\hat{g}^{**}s$ -open and G is \hat{g}^{*} -open and $sInt(A) \cup A^{c} \subseteq G$. Then, $G^{c} \subseteq (sInt(A) \cup A)^{c} \Rightarrow G^{c} \subseteq (sInt(A)^{c} \cap A \Rightarrow G^{c} \subseteq sCl(A^{c}) - A^{c}$. Since, A^{c} is $\hat{g}^{**}s$ -closed, $sCl(A^{c}) - A^{c}$ contains no non-empty \hat{g}^{*} -closed set in X. Therefore, $G^{c} = \emptyset \Rightarrow G = X$.

Theorem 4.4. In a topological space (X, τ) , if $Int(A) \cup (X - A)$ is $\hat{g}^{**}s$ -closed, then $G \cup Int(A) = A$, for some $\hat{g}^{**}s$ -open set in G.

Proof. Assume that $Int(A) \cup (X - A)$ is $\hat{g}^{**}s$ -closed in (X, τ) .

Let $U = Int(A) \cup (X - A)$, then U^c is $\hat{g}^{**}s$ -open. Now, $U^c \cup (Int(A)) = [(X - A) \cup (Int(A))]^c \cup (Int(A)) = [(X - A)^c \cap (Int(A))^c] \cup (Int(A)) = [A \cap (Int(A))^c] \cup (Int(A)) = [A \cup (Int(A))] \cap [(Int(A))^c \cup (Int(A))] = A \cap X = A$. Take, $G = U^c$, we have $A = G \cup (Int(A))$ for some $\hat{g}^{**}s$ -open set in G.

Theorem 4.5. If A is any subset of X, $\hat{g}^{**}sInt(A)$ is $\hat{g}^{**}s$ -open. Then, $\hat{g}^{**}sInt(A)$ is the largest $\hat{g}^{**}s$ -open set contained in A.

Proof. It is obvious from definition.

Theorem 4.6. A subset A of X is $\hat{g}^{**}s$ -open, then $\hat{g}^{**}sInt(A) = A$.

Proof. The proof is obvious.

Remark 4.7. The converse of above theorem is not true.

Example 4.8. Let $X = \{a, b, c, d\}$. $\tau = \{\emptyset, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ and $\hat{g}^{**}so(X, \tau) = \{\emptyset, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}$ Here, $\{b, c, d\} = \hat{g}^{**}sInt(\{b, c, d\})$ but $\{b, c, d\}$ is not a $\hat{g}^{**}s$ -open set.

Theorem 4.9. If A is a subset of X, then $\hat{g}^{**}sInt(A)$ is the set of all $\hat{g}^{**}s$ -interior points of A.

Proof. $x \in \hat{g}^{**}sInt(A)$ iff $x \in \hat{g}^{**}s$ -open subset U of A. $x \in \hat{g}^{**}sInt(A)$ iff x is a $\hat{g}^{**}s$ -interior points of A.

Corollary 4.10. A subset A of X is $\hat{g}^{**}s$ -open iff every point of A is a $\hat{g}^{**}s$ -interior points of A.

Proof. By using theorem: 4.6 and theorem: 4.9.

Theorem 4.11. Every open set is $\hat{g}^{**}s$ -open.

Proof. Let A be an open set in X. Then, A^c is closed in X. Since every closed set is $\hat{q}^{**}s$ -closed, A^c is $\hat{q}^{**}s$ -closed in X. Then, A is $\hat{q}^{**}s$ -open in X.

Theorem 4.12. If a subset A of X is $\hat{g}^{**}s$ -open and U is open, then $A \cup U$ is $\hat{g}^{**}s$ -open.

Theorem 4.13. In a topological space (X, τ) , the following hold:

- $i) \ \hat{g}^{**} sInt(\emptyset) = \emptyset$
- $ii) \hat{g}^{**}s(X) = X$

If A and B are subsets of X.

- $iii) \ \hat{g}^{**}sInt(A) \subseteq A$
- $iv) A \subseteq B \Rightarrow \hat{g}^{**}sInt(A) \subseteq \hat{g}^{**}sInt(B)$
- $v) \ Int(A) \subseteq sInt(A) \subseteq \hat{g}^{**}sInt(A) \subseteq A$
- $vi) \ \hat{g}^{**}sInt(\hat{g}^{**}sInt(A)) \subseteq \hat{g}^{**}sInt(A)$
- $vii) \ \hat{g}^{**}sInt(A \cup B) \supseteq \hat{g}^{**}sInt(A) \cup \hat{g}^{**}sInt(B)$
- viii) $\hat{g}^{**}sInt(A \cap B) \subseteq \hat{g}^{**}sInt(A) \cap \hat{g}^{**}sInt(B)$
- $ix) Int(\hat{g}^{**}sInt(A)) = Int(A)$
- $x) \hat{g}^{**}sInt(Int(A)) = Int(A)$

Theorem 4.14. Let A be a subset of a space X, then the following are true.

i)
$$(\hat{g}^{**}sInt(A))^c = \hat{g}^{**}sCl(A^c)$$

ii) $\hat{g}^{**}sInt(A) = (\hat{g}^{**}sCl(A))^c$

$$iii)$$
 $\hat{g}^{**}sCl(A) = (\hat{g}^{**}sInt(A)^c)^c$

Proof. i) Let $x \in (\hat{g}^{**}sInt(A))^c \Rightarrow x \notin \hat{g}^{**}sInt(A)$. That is, every $\hat{g}^{**}s$ -open set U containing x is such that $U \notin A \Rightarrow$ every $\hat{g}^{**}s$ -open set containing x such that $U \cap A^c \neq \emptyset \Rightarrow x \in \hat{g}^{**}sCl(A^c)$. Therefore, $(\hat{g}^{**}sInt(A))^c \subseteq \hat{g}^{**}sCl(A^c)$.

Conversely, $x \in \hat{g}^{**}sCl(A^c)$. By theorem 4.7, every $\hat{g}^{**}s$ -open set containing x such that $U \cap A^c \neq \emptyset \Rightarrow x \notin \hat{g}^{**}sInt(A) \Rightarrow x \in (\hat{g}^{**}sInt(A))^c$. Therefore, $\hat{g}^{**}s(A^c) \subseteq (\hat{g}^{**}sInt(A))^c$. Hence, $\hat{g}^{**}s(A^c) = (\hat{g}^{**}sInt(A))^c$.

ii) By taking complement in (i) we get the result. iii) Replace A by A^c in (i).

5. $\hat{g}^{**}s$ - Border

Definition 5.1. If A is a subset of X, $\hat{g}^{**}s$ -border of A is defined by $\hat{g}^{**}sBd(A) = A \setminus \hat{g}^{**}sInt(A)$.

Theorem 5.2. In a topological space (X, τ) , the following hold:

$$i) \hat{g}^{**}sBd(\emptyset) = \emptyset$$

$$ii) \ \hat{g}^{**}sBd(X) = \emptyset$$

If A and B are subsets of X.

$$iii) \ \hat{g}^{**}sBd(A) \subseteq A$$

$$iv) \hat{q}^{**}sInt(A) \cup \hat{q}^{**}sBd(A) = A$$

$$v) \ \hat{g}^{**}sInt(A) \cap \hat{g}^{**}sBd(A) = \emptyset$$

$$vi) \ \hat{q}^{**}sBd(A) \subseteq sBd(A) \subseteq Bd(A)$$

$$vii) \ \hat{g}^{**}sInt(\hat{g}^{**}sBd(A)) = \emptyset$$

viii)
$$A$$
 is $\hat{g}^{**}sInt(A)$ iff $\hat{g}^{**}sBd(A) = \emptyset$

$$ix$$
) $\hat{g}^{**}sBd(\hat{g}^{**}sInt(A)) = \emptyset$

$$(x) \hat{g}^{**}sBd(\hat{g}^{**}sBd(A)) = \hat{g}^{**}sBd(A)$$

$$xi) \ \hat{g}^{**}sBd(A) = A \cap \hat{g}^{**}sCl(X \setminus A)$$

$$xii) \ \hat{g}^{**}sBd(A) = A \cap D_{\hat{g}^{**}s}(X \setminus A)$$

6. $\hat{g}^{**}s$ - Frontier

Definition 6.1. A subset A of a topological space (X, τ) is called as a $\hat{g}^{**}s$ -frontier of A if $\hat{g}^{**}sFr(A) = \hat{g}^{**}sCl(A) \setminus \hat{g}^{**}sInt(A)$.

Theorem 6.2. In a topological space (X, τ) , the following hold:

$$i) \ \hat{g}^{**} sFr(\emptyset) = \emptyset$$

$$ii) \ \hat{g}^{**} sFr(X) = \emptyset$$

If A is a subset of X.

$$iii)$$
 $\hat{g}^{**}sCl(A) = \hat{g}^{**}sInt(A) \cup \hat{g}^{**}sFr(A)$

$$iv) \ \hat{g}^{**}sInt(A) \cap \hat{g}^{**}sFr(A) = \emptyset$$

$$v) \ \hat{g}^{**}sBd(A) \subseteq \hat{g}^{**}sFr(A) \subseteq \hat{g}^{**}sCl(A)$$

```
vi) A is \hat{q}^{**}s-closed iff A = \hat{q}^{**}sInt(A) \cup \hat{q}^{**}sFr(A)
      vii) \hat{q}^{**} sFr(A) \subseteq sFr(A) \subseteq Fr(A)
      viii) \hat{q}^{**}sFr(A) = \hat{q}^{**}sCl(A) \cap \hat{q}^{**}sCl(X \setminus A)
      ix) \hat{g}^{**}sFr(A) is \hat{g}^{**}s-closed and hence \hat{g}^{**}sCl(\hat{g}^{**}sFr(A)) = \hat{g}^{**}sFr(A)
      x) \hat{q}^{**}sFr(A) = \hat{q}^{**}sFr(X \setminus A)
      xi) \hat{g}^{**}sFr(A) is \hat{g}^{**}s-closed iff \hat{g}^{**}sFr(A) = \hat{g}^{**}sBd(A). Hence A is \hat{g}^{**}s -
closed iff A contains its \hat{q}^{**}s-frontier.
      xii) \hat{q}^{**}sFr(\hat{q}^{**}sInt(A)) \supset \hat{q}^{**}sFr(A)
      xiii) \ \hat{q}^{**}sFr(\hat{q}^{**}sCl(A)) \subset \hat{q}^{**}sFr(A)
      xiv) \hat{q}^{**}sFr(\hat{q}^{**}sFr(A)) \subset \hat{q}^{**}sFr(A)
      xv) X - \hat{g}^{**}sInt(A) \cup \hat{g}^{**}sInt(X - A) \cup \hat{g}^{**}sFr(A)
Theorem 6.3. If A is a subset of X, then \hat{g}^{**}sFr(\hat{g}^{**}sFr(\hat{g}^{**}sFr(A))) = \hat{g}^{**}s(\hat{g}^{**}s(A)).
Proof. \hat{q}^{**}s(\hat{q}^{**}s(\hat{q}^{**}s(A)))
      = \hat{g}^{**}sCl(\hat{g}^{**}s(\hat{g}^{**}s(A))) \cap \hat{g}^{**}sCl(X \setminus \hat{g}^{**}sFr(\hat{g}^{**}sFr(A)))
Now, X \setminus \hat{g}^{**}sFr(\hat{g}^{**}sFr(A)) = X \setminus [\hat{g}^{**}sCl(\hat{g}^{**}sFr(A)) \cap \hat{g}^{**}sCl(X \setminus \hat{g}^{**}sFr(A))]
      = [X \setminus \hat{q}^{**}sFr(A)] \cup [X \setminus \hat{q}^{**}sCl(X \setminus \hat{q}^{**}sFr(A))].
Consider, \hat{g}^{**}sCl(X \setminus \hat{g}^{**}sFr(\hat{g}^{**}sFr(A)))
      = \hat{q}^{**}sCl[X \setminus \hat{q}^{**}sFr(A)] \cup [X \setminus \hat{q}^{**}sCl(\hat{q}^{**}sFr(A))]
      = D \cup \hat{g}^{**}s(X \setminus D), where D = \hat{g}^{**}sCl(X \setminus \hat{g}^{**}sFr(A))
      \supset D \cup (X \setminus D) = X
Substitute (2) in (1),
Therefore, (1) \Rightarrow \hat{g}^{**} sFr(\hat{g}^{**} sFr(\hat{g}^{**} s(A)))
                                 = \hat{q}^{**}sCl(\hat{q}^{**}sFr(\hat{q}^{**}sFr(A))) \cap X
                                 = \hat{q}^{**} sFr(\hat{q}^{**} sFr(A)) \cap X
                                 = \hat{q}^{**}sFr(\hat{q}^{**}sFr(A))
Theorem 6.4. If a subset A is \hat{q}^{**}s-open or \hat{q}^{**}s - closed in X, then
\hat{g}^{**}sFr(\hat{g}^{**}sFr(A)) = \hat{g}^{**}sFr(A).
Proof. \hat{q}^{**}sFr(\hat{q}^{**}sFr(A)) = \hat{q}^{**}sCl(\hat{q}^{**}sFr(A)) \cap \hat{q}^{**}sCl(X \setminus \hat{q}^{**}sFr(A))
                  = \hat{q}^{**}sCl(A) \cap \hat{q}^{**}sCl(X \setminus A) \cap \hat{q}^{**}sCl(X \setminus \hat{q}^{**}sFr(A))
If A is \hat{q}^{**}s-open in X and \hat{q}^{**}sFr(A)\cap A=\emptyset \Rightarrow A\subset X\setminus \hat{q}^{**}sFr(A)\Rightarrow \hat{q}^{**}sCl(A)\subseteq
\hat{g}^{**}sCl(X \setminus \hat{g}^{**}sFr(A)) \Rightarrow \hat{g}^{**}sCl(A) \cap \hat{g}^{**}sCl(X \mid \hat{g}^{**}sFr(A)) = \hat{g}^{**}sCl(A).
If A is \hat{q}^{**}s-closed in X, \hat{q}^{**}sFr(A) \subset A \Rightarrow X \setminus A \subset X \setminus \hat{q}^{**}sFr(A) \Rightarrow \hat{q}^{**}sCl(X \setminus A)
A) \cap \hat{q}^{**}sCl(X \setminus \hat{q}^{**}sFr(A)) = \hat{q}^{**}sCl(X \setminus A).
Therefore, \hat{g}^{**}sFr(\hat{g}^{**}sFr(A)) = \hat{g}^{**}sCl(A) \cap \hat{g}^{**}sCl(X \subseteq A) = \hat{g}^{**}sFr(A).
Theorem 6.5. If A and B are subsets of X such that A \cap B = \emptyset and A is \hat{q}^{**}s-open
in X, then A \cap \hat{g}^{**}sFr(B) = \emptyset.
Proof. Since \hat{q}^{**}sFr(B) \subseteq \hat{q}^{**}sCl(B) and by theorem 3.10, A \cap \hat{q}^{**}sFr(B) = \emptyset.
```

Theorem 6.6. If A and B are subsets of X, then

$$i) \ \hat{g}^{**}sFr(A \cup B) \supseteq \hat{g}^{**}sFr(A) \cap \hat{g}^{**}sFr(B)$$

$$ii) \ \hat{g}^{**}sFr(A \cap B) \subseteq \hat{g}^{**}sFr(A) \cup \hat{g}^{**}sFr(B)$$

7. $\hat{q}^{**}s$ - Exterior

Definition 7.1. If A is a subset of X, $\hat{g}^{**}s$ -exterior of A is defined by $\hat{g}^{**}sExt(A) = \hat{g}^{**}sInt(X - A)$.

Theorem 7.2. In a topological space (X, τ) , the following hold:

$$i) \hat{g}^{**}sExt(\emptyset) = X$$

$$ii) \ \hat{g}^{**}sExt(X) = \emptyset$$

If A and B are subsets of X iii)
$$A \subseteq B \Rightarrow \hat{g}^{**}sExt(A) \subseteq \hat{g}^{**}sExt(B)$$

iv)
$$\hat{g}^{**}sExt(A)$$
 is a $\hat{g}^{**}s$ -open set.

$$v) \; Ext(A) \subseteq sExt(A) \subseteq \hat{g}^{**}sExt(A) \subseteq X \setminus A$$

vi) A is
$$\hat{g}^{**}s$$
-closed iff $\hat{g}^{**}sExt(A) = X \setminus A$

$$vii) \ \hat{g}^{**}sExt(A) = X \setminus \hat{g}^{**}sCl(A)$$

$$viii)$$
 $\hat{g}^{**}sExt(\hat{g}^{**}sExt(A)) = \hat{g}^{**}sInt(\hat{g}^{**}sCl(A))$

$$ix) \hat{g}^{**}sExt(A) = \hat{g}^{**}sExt(X \setminus \hat{g}^{**}sExt(A))$$

$$x) \ \hat{g}^{**}sInt(A) \subseteq \hat{g}^{**}sExt(X \setminus \hat{g}^{**}sExt(A))$$

$$xi) X = \hat{g}^{**}sInt(A) \cup \hat{g}^{**}sExt(A) \cup \hat{g}^{**}sFr(A)$$

$$xii) \ \hat{g}^{**}sExt(A \cup B) \subseteq \hat{g}^{**}sExt(A) \cap \hat{g}^{**}sExt(B)$$

$$xiii)$$
 $\hat{g}^{**}sExt(A \cap B) \supseteq \hat{g}^{**}sExt(A) \cup \hat{g}^{**}sExt(B)$.

References

- [1] Anto M. and Andrin Shahila S., $\hat{g}^{**}s-$ closed sets in topological spaces, IJMTT ICIMCEH, (2020), 1-7.
- [2] Crosseley S. G., Hilderbrand S. K., Semi-closure, Texas Journal of Sc., 22 (1971), 99-112.
- [3] Das P., Note on some application of semi-open sets, Prog. Math, 7 (1973), 33-34.
- [4] Levine N., Semi-open sets and semi-continuity in topological spaces, 70 (1963), 36-41.
- [5] Mary Helen M. Pauline and Gayathri A., \hat{g} closed sets in topological spaces, IJMTT, 6(2) (2014), 60-74.
- [6] Veera Kumar M. K. R. S, \hat{g} -closed sets and GLC-functions, Indian J. Math., 43(2) (2000), 231-247.